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ABSTRACT 

A novel integral principle is presented in this paper for evaluating weakly singular boundary integrals. Accurate and 

efficient evaluation of weakly singular integrals arising in the boundary integral equations (BIEs) is of crucial 

importance for successful implementation of the boundary element method (BEM). Various methods have been 

proposed to cope with these integrals. Element subdivision is one of the most widely used methods for the 

numerical evaluation of weakly singular integrals. Through the element subdivision, an element is subdivided into a 

number of patches by a sequence of spheres centered at the source point. In our method, an improved serendipity 

triangle patch with four-node is obtained through the element subdivision. One edge of the patch we obtained is 

replaced by quadratic curve, which is different from the traditional patch. In the serendipity patch, the distance 

between the middle node of the quadratic curve and the source point is equal to the length of radius of the sphere 

which is centered at the source point. Furthermore, in order to investigate the effect of the location of the middle 

node on the accuracy of integral, we have changed its location along the direction of the middle node to the source 

point step by step. Through theoretical deduction and numerical experiment, the location with the highest accuracy 

has been found in this paper. Moreover, the coordinate transformation is used to evaluate the weakly singular 

integral in the serendipity triangle patch and the Gaussian points distribute in the radial pattern. Comparing with the 

conventional method, our method can achieve higher accuracy by smaller number of Gaussian points, especially for 

the large-angle patch. Numerical examples are presented to verify the proposed method. Results demonstrate the 

accuracy and efficiency of our method. 

 

Keywords: BIEs, BEM, weakly singular integral, four-node isosceles triangle patch, Gaussian 

quadrature. 
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1. Introduction 

Weakly singular integrals are appeared in the 

basic boundary integral equations (BIEs) when the 

boundary integral equation method (BEM) is used to 

solve potential and mechanical problems. There are 

many ways of evaluating weakly singular integrals 

mentioned in the boundary element literature. These 

approaches include integral simplification [1], 

element subdivision [2] and coordinate 

transformation [3]. Moreover, polar coordinate 

transformation is a powerful and useful tool to 

evaluate weakly singular integral in boundary 

element. It converses the surface integral into a 

double integral in radial and angular directions. 

Many works have been done on dealing with the 

singularity in the radial direction; however, 

numerical integration on the angular direction still 

deserves more attention. In fact, after singularity 

cancelation or subtraction, although the integrand 

may behave very well in the radial direction, its 

behavior in the angular direction would be much 

worst, so too many quadrature points are needed. 

Especially when the source point lies close to the 

boundary of the element, one can clearly observe 

near singularity of the integrand in the angular 

direction. Similar problems have been considered in 

work about the nearly singular BEM integrals. 

Effective methods along this line are the subdivision 

method [4], the Hayami transformation [5], the 

sigmoidal transformation [6], the conformal 

transformation [7], the variable transformation [8], 

etc. 

In this paper, Sphere subdivision method 

proposed by Zhang is used [9], and based on this 

method; a serendipity triangular patch with 

four-node is presented. Case studies have been made 

to investigate the effect of the location of the middle 

node of the serendipity patch on accuracy, and an 

optimal location is determined. A theoretical 

analysis validating the optimal location is also given 

with a new form of polar coordinate transformation. 

This system is very similar to the conventional polar 

system, but its implementation is simpler than the 

conventional polar system and also performs 

efficiently. With our method, the weakly singular 

boundary integrals in the regular or irregular 

elements can be accurately and effectively 

calculated. And our method can be also applied to 

the patch with large angles at the source point. 

Numerical examples are presented to validate the 

proposed method. Results demonstrate the accuracy 

and efficiency of our method. 

This paper is organized as follows. Detailed 

description of the serendipity triangular patch and 

the coordinate system with new form are described 

in Section 2. In Section 3, the effect of the middle 

node’s location in the serendipity triangular patch is 

introduced. Numerical examples are given in 

Section 4. The paper ends with conclusions in 

Section 5. 



2. Four-node serendipity triangular patch 

2.1 Four-node serendipity triangular patch 

In this section, we study a serendipity triangular 

patch obtained through the element subdivision. 

 

Figure 1. Four-node serendipity triangular patch. 

The serendipity triangular patch is as shown in 

Fig. 1, the following symbols are defined: 

0——the source point; 

3——the middle node; 

0, 1, 2, 3——serendipity patch node; 

In the serendipity patch, the distance between 

point 0 and point 3 is equal to the length of radius of 

the sphere which is centered at the source point. And 

the length of radius we can obtain in [9]. For the 

patches containing source point, the coordinate 

transformation is used to eliminate the singularities. 

   

Figure 2. The coordinate transformation of serendipity 

triangular patch. 

2.2 coordinate transformation 

Considering the weakly singular integral over a 

patch as shown in Fig. 2, the following boundary 

integral can be represented as  
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where y and x are referred to as the source point and 

the field point, respectively, r is the distance 

between y and x, f is a well-behaved function, andφ

(x) is a shape function. 

For this patch, to construct the local (ρ, θ) system, 

the following mapping is used: 
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In the Eq. (2a), N0, N1 and N2 are the shape function 

of the quadratic curve. 
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Combining Eq. (2a), 2(b) and (2c), the coordinate 

transformation can be written as: 
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Then the integral I can be written as 
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Where Jb(ρ,θ) is the Jacobian of the transformation 

from the x-y system to the ρ-θ system, 
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3. The effect of the middle node’s location 

3.1 Changing the middle node’s location 

In this section, we will investigate the effect of 

the middle node’s location on the computational 
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accuracy. As shown in Fig. 3, its location is changed 

along the direction of the source point to the middle 

node by using the Eq. (6). 
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As both Jb and r have ρ so we can turn it off. 

The plot of the function f(θ)=Jb/r on the 

conventional triangle patch and the serendipity 

triangle patch is made by MATLAB. As shown in 

Fig. 4, we can see when t changes from 0.1 to 1.0, 

the plots of the function on the serendipity triangular 

patch is gentler than that on the conventional linear 

triangle patch (t=0). Thus compared with 

conventional triangle patch, high accuracy results 

can be obtained with less Gaussian quadrature 

points by using the proposed serendipity triangular 

patch. 

       

(a)                           (b) 

Figure 3. (a) The location of the middle node in the serendipity triangular patch. 

(b) Conventional linear triangle patch. 

 

Figure 4. The plots of function Jb/r. 

3.2 The triangle patch with large angles 

In this section, the patches with large angles at 

the source point obtained through element 

subdivision are introduced. And there are some 

difficulties on the integrals of the angular direction 

in these patches. 

Using Eq. (3) and Eq. (5), the Eq. (7) can be 

obtained. 
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(a)                          (b) 

Figure 5. (a) Conventional linear triangle patch; (b) serendipity triangular patch. 

 

Figure 6. The plots of function Jb/r. 

 

Figure 7. The plots of function Jb/r. 

The conventional linear triangle patch as shown 

in Fig. 5(a), when the angle ∠102 takes different 

values, the plots of the Eq. (7a) have been made by 

MATLAB. And 1r  is the distance between the 

source point to the point of the edge 12. As shown in 

Fig. 6, when the angle increase gradually, the plots 

of function f(θ)=Jb(ρ,θ)/r are becoming steeper and 

steeper and the change of 1r  become more and more 

acutely. When 1r  is close to zero, the near 

singularity in f(θ) can be clearly seen from Fig. 6.  

If the serendipity triangular patch as shown in 

Fig. 5(b) is used to substitute the conventional linear 

triangular patch, when the angle ∠102 is equal to 

0.84π, the plots of the function f(θ)=Jb(ρ, θ)/r are 

shown in Fig. 7. It can be clearly seen that the curve 

in the plot become gentler and gentler when t is 

changed close to 0.5. So when evaluating the 

function f(θ), more accurate results can be obtained 

by using the serendipity triangular patch. 

3.3 The optimal location of the middle node 

In this section, the best location of the middle 

node is found when t is equal to 0.5. The theoretical 

analysis is given to verify that. And more details of 

the theoretical analysis are as follows.  

The Eq. (3) can be written as the form of the Eq. 

(8). 







0

1 2



x

y

3 

0

1 2



x

y

3



 

Figure 8. The location of the middle node in the 

serendipity triangular patch. 
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From the element subdivision, we can obtain 

that the line segment 03 is perpendicular to line 

segment 12, and the edges 02, 01, and 0p have the 

same length R obtained by element subdivision [9]. 

In order to conveniently calculate the coordinate of 

the point p, the source point is placed in (0, 0). The 

coordinate of the point p and point 3 can be obtained 

by Eq. (9) and as shown in Eq. (10).  
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Using Eq. (8a) and Eq. (8b), the Eq. (11) can be 

obtained. As the line segment 12 is perpendicular 

to the line segment 0p and the slope of the line pq is 

equal to that of the line 03. The Eq. (12) can be 

obtained. 
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Using Eq. (12), Eq. (11) can be written as: 
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And Eq. (11) can be further written as: 
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Substitute the parameter a1, a2, b1, b2, c1, c2 

and Eq. (15) into Eq. (14) and Eq. (16), respectively. 

Calculate it in MAPLE 15 when t is equal to 0.5, 

M=0 and N=0 can be easily obtained. So t=0.5 is a 

common root of the equation M(t)=0 and N(t)=0. 

2 2

1 2 2 1 1 2

2 2

1 1 2 2 1 2 2 1 1 2

2( )( )

(2 2 )( )

N c b c b a a

a c a c b b a b a b

  

    
   (16)

 

That is to say, when t is equal to 0.5, the Eq. (17) 

is workable and the ratio of Jb(ρ,θ)/r has nothing to 

do with ρ and θ. And the ratio A can be expressed as 

follows in Eq. (18). 
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With the detailed description above, it can be 

clearly seen that our method has obvious advantages 

over conventional method.  

4. Numerical examples 

To evaluate the effectiveness and accuracy of 

our method, in this section, several comparisons are 

made between our method and the conventional 

method for planar element and curved surface 

element. For the purpose of error estimation, relative 

error is defined as follows: 

Relative Error=
n e

e

I I

I
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where In is the numerical solution, and Ie is the exact 

solution of the integral. 

We consider the numerical evaluation of the integral 

1
I d

r
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In Eq. (20), where Г is an arbitrary boundary 

element and ϕ is a shape function of the element. 

And in all the numerical examples, the above 

coordinate transformation is used to remove 

singularities in the patches which contain the source 

point, while the remaining regular quadrilateral and 

triangular patches are respectively evaluated by the 

standard Gaussian quadrature. The number of the 

Gaussian points m is determined by [10-12]. 

4.1 Examples of serendipity triangle patch 

In this example, we study the influence of the 

middle node’s location on the computational 

accuracy in our method when the source point is 

fixed. As shown in Fig. 9, three vertexes of the patch 

located at (0, 1, 0), (-2, 0, 0) and (2, 0, 0), 

respectively. In each case, the source point is fixed 

at (0, 1, 0), and the middle node 3 is determined by 

an offset parameter t, 0 1t  , using the following 

equation : 
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Figure 9. The location of the middle point of the 

serendipity triangular patch. 
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Table 1: Gaussian points number used by linear and serendipity patch in case of equivalent accuracy. 

 

Gaussian points number  

Relative Error (angular 

direction) 

(radius 

direction) 
total 

Conventional method (t=0.0) 14 5 70 7.14e-007 

Our method (t=0.3) 10 5 50 2.34e-007 

Our method (t=0.5) 2 5 10 3.33e-016 

Our method (t=0.7) 7 5 35 2.86e-008 

Our method (t=1.0) 7 5 35 9.97e-007 

Table 2: accuracy obtained by linear and serendipity patch in case of equivalent Gaussian sample points. 

 Gaussian points number  

Relative Error (angular 

direction) 

(radius 

direction) 
total 

Conventional method (t=0.0) 7 5 35 8.43e-004 

Our method (t=0.3) 7 5 35 2.31e-005 

Our method (t=0.5) 7 5 35 3.33e-016 

Our method (t=0.7) 7 5 35 2.86e-008 

Our method (t=1.0) 7 5 35 9.97e-007 

The accuracy obtained by both our method and 

the conventional method and the number of the 

Gaussian sample points used are listed in Table 1 

and Table 2. It is seen that to obtain the same level 

of accuracy, our method needs much fewer sample 

points, and thus, considerably increases the 

computational efficiency. And as illustrated in Table 

1 and Table 2, from the numerical solutions obtained 

we can find that when t = 0.5, we can obtain the 

highest accuracy with the fewest Gaussian sample 

points. 

4.2 Examples of triangle element with large-angle 

 

Figure 10. Subdivisions of planar triangular element 

with our method. 

In this part, we study the numerical evaluation 

of the triangle element in our method when t = 0.5. 

Three vertexes of the element are located at (0, 1, 0), 

(-4, 0, 0) and (4, 0, 0), respectively. And the source 

point is fixed at (0, 1, 0). Through adaptive element 

subdivision [9], the element is subdivided two 

patches as shown in Fig. 10. And the angle at the 

source point is approximate equal to 0.84π. The 

coordinate of point 3, 4 and 5 can be calculated by 

using Eq. (10b). 

The accuracy obtained by both our method and 

the conventional method and the number of the 

Gaussian sample points used are listed in Table 3. It 

can be seen that to obtain the same level of accuracy, 

our method needs much fewer sample points, and 

thus, considerably increases the computational 

efficiency. 
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Table 3: Numerical evaluation for planar triangular element. 

 
Gaussian points 

number 
Relative Error 

Gaussian points 

number 
Relative Error 

Conventional method 55 1.68e-003 130 9.05e-007 

Our method  (t=0.5) 54 8.11e-006 87 5.60e-007 

4.3 Examples of planar element 

In this example, we study the numerical 

evaluation of the planar quadrilateral element in our 

method when t = 0.5. The vertexes of the element 

are located at (1, 1, 0), (-1, 1, 0), (-1, -1, 0) and (1, 

-1, 0), respectively. And the source point is fixed at 

(0, -0.9, 0). As shown in Fig. 13, the source points 

are very close to the edge. Through adaptive element 

subdivision [9], the element is subdivided into a few 

patches as shown in Fig. 11(b). 

       

(a) the conventional method                (b) Our method 

Figure 11. Subdivisions of planar quadrilateral element with our method. 

Table 4: Numerical evaluation for planar quadrilateral element. 

 
Gaussian points 

number 
Relative Error 

Gaussian points 

number 
Relative Error 

Conventional method 672 3.01e-004 1664 7.79e-007 

Our method  (t=0.5) 652 3.95e-006 872 4.81-007 

The accuracy obtained by both our method and 

the conventional method and the number of the 

Gaussian sample points used are listed in Table 4. It 

is seen that when the number of Gaussian sample 

points used is the same, the accuracy obtained by 

our method is higher than that by the conventional 

method. And to obtain the same level of accuracy, 

our method needs much fewer sample points. The 

effectiveness and accuracy of our method are 

demonstrated again. 

5. Conclusions 

In this paper, a serendipity triangle patch with 

four-node is introduced for calculating the singular 

integrals in the BIE. By theoretical analysis and 

numerical experiment, the optimal location of the 

middle node of the serendipity patch has been found 

for the highest accuracy and efficiency. From the 

numerical examples, it has been demonstrated that 

our method can achieved much better accuracy than 

the conventional method with equivalent number of 

Gaussian sample points. On the other hand, to obtain 

the same level of accuracy, our method requires 



much fewer sample points, and thus, considerably 

increases the computational efficiency. Extending 

our method to compute curved surface element and 

3D nearly singular integral is straightforward and 

ongoing. 
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